

Why Migrate from HP/Agilent 432A/B to Agilent N432A Thermistor Power Meter?

Migration Guide

Seven Key Reasons

- Thermistor power sensor backward compatibility
- Built-in 6.5 digit digital multimeter (DMM)
- User selectable operating resistance
- · 10 connectivity remote interface
- Power sensor calibration factor storage in power meter
- · Built-in range calibrator
- Enhanced user interface with numeric keypad and high resolution LCD display

Contents

Introduction	2
Key Specifications and Features	3
Seven Reasons to Migrate from 432A/B to N432A Thermistor Power Meter:	4
Reason 1: Thermistor Power Sensor Backward Compatibility	4
Reason 2: Built-in 6.5 Digit Digital Multimeter	5
Reason 3: User Selectable Operating Resistance	6
Reason 4: 10 Connectivity Remote Interface	7
Reason 5: Power Sensor Calibration Factor Storage in Power Meter	9
Reason 6: Built-in Range Calibrator	10
Reason 7: Enhanced User Interface with Numeric Keypad and High Resolution LCD Display	12
Conclusion	13
Reference	13
Related Literatures	13
·	

Sustain Your Past Achievement and Enhance Your Measurement Performance by Migrating to the New N432A Thermistor Power Meter

In the 1960s, HP/Agilent introduced the 432A/B digital/analog thermistor power meter, which has been on the market since. The 432A/B thermistor power meters are mainly used for instrumentation and system calibration, as well as characterization via metrology and standard lab, calibration lab, or power meter calibration "self-maintenance".

However, some new applications and technologies require better capability and performance in areas such as auto zeroing, built-in range calibrator, and digital multimeter. Besides, many users prefer instrument connectivity interfaces such as USB 2.0 or Gigabit LAN, often coupled with a need for faster measurement throughput to handle more demanding test methodology.

Therefore, the transition from 432A/B digital/analog thermistor power meter to a new high-performance thermistor power meter requires careful consideration. This document provides an overview and comparison of the new Agilent N432A thermistor power meter with existing 432A/B thermistor power meters. It also provides seven reasons to migrate from the HP Agilent 432A/B to Agilent N432A thermistor power meter.

Introduction

Agilent Technologies is introducing the N432A thermistor power meter, a replacement for the legacy 432A/B thermistor power meters. The new N432A thermistor power meter, when used with temperature-compensated thermistor mount sensors, has a power range of –30 dBm to +10 dBm and a frequency range of 100 kHz to 18 GHz.

N432A Enhanced Features

- · Frequency range: 100 kHz to 18 GHz
- Power range: $-30 \text{ dBm to } +10 \text{ dBm } (10 \text{ mW to } 1 \text{ } \mu\text{W})$
- Selectable operating resistance: 100 Ω , 200 Ω , 300 Ω or 400 Ω
- Agilent thermistor mount sensor compatibility: 8478B, 478A and K/P/R/X486A
- Built-in 6.5 digit DMM
- External $V_{\text{RE}} \& V_{\text{COMP}}$ output (through BNC port at rear panel) for higher accuracy measurement
- · Easy-to-use front panel interface
- · Built-in test system (BIST) for ADC calibration without the need of a range calibrator
- Digital display output of power measurement (in mW or dBm unit)
- Recorder output
- · Calibration factor table for manual inputs of the thermistor mount calibration factor

Key Specifications and Features

Table 1. Comparison of the new N432A and 432A/B thermistor power meter

Specification	N432A	432A/B	
Frequency range	100 kHz to 18 GHz		
	(Sensor dependent)		
Power range	-30 dBm to +10 dBm (1 μW to 10 mW)		
Daidne versietenen	100 Ω, 200 Ω, 300 Ω or 400 Ω	100 Ω or 200 Ω	
Bridge resistance	(User Selectable)	(User Selectable)	
Power sensor compatibility	*478A and 8478B	**478A, 8478B, S486A, G486A, J486A, H486A, X486A,M486A, P486A, K486A, and R486A (Thermistor power sensor)	
Measurement speed (reading/second)	2.5 readings/sec	Not applicable	
1 mW reference accuracy	± 0.4% (Typical)	Not applicable	
Power meter accuracy	0.1% ± 0.5 μW	0.2% ± 0.5 μW	
Cal factor	Manually enter power sensor calibration factors into power meter	Calibration factor selector on power meter	
Cal factor resolution	4 digits	2 digits	
Display	Color LCD Analog with gauge		
10 connectivity	GPIB, USB, and LAN (LXI-C)	None	
Measurement display	Digital	Analog	
V _{RF} & V _{COMP} output	Yes (Rear panel BNC port)		
Recorder output	Yes (Rear panel BNC port)		
Software driver	IVI-COM & IVI-C	None	
Physical dimension (Width x Height x Depth)	212.6 mm x 88.5 mm x 348.3 mm (8.5 in x 3.5 in x 13.7 in)	130 mm x 155 mm x 279 mm (5.2 in x 6.1 in x 11 in)	
Weight	3.6 kg (8.0 lb)	3 kg (6.4 lb)	

^{*} The compatibility of N432A with S486A, G486A, J486A, H486A, X486A, M486A, P486A, K486A, and R486A are not warranted by Agilent Technologies.

Power Meter Dimensions

The new N432A thermistor power meter has the same form factor as the existing Agilent power meters (such as the E4416/7/8/9 A/B, N1913/14A, and N1911/2A). It measures 212.6 mm x 88.5 mm x 348.3 mm (excluding front panel and rear panel protrusions). This size is well suited for system integration because it is half of the standard rack width.

Figure 1. The front view and side view dimension of N432A and 432A/B

^{**} S486A, G486A, J486A, H486A, X486A, M486A, P486A, K486A, and R486A are obsolete products and are no longer supported by Agilent Technologies.

Seven Reasons to Migrate from 432A/B to N432A Thermistor Power Meter

REASON

Thermistor Power Sensor Backward Compatibility

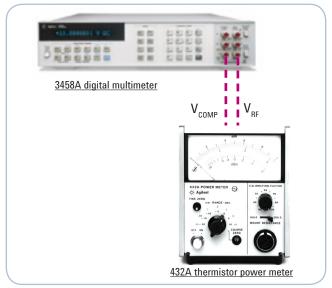

The new N432A thermistor power meter is designed to be fully compatible with the Agilent thermistor mount sensors. This compatibility protects your investment capital and makes the migration to the new thermistor power meter much easier. The existing thermistor mount contains data showing the calibration factor (CF) at multiple frequencies, which are traceable to the U.S. National Institute of Standards and Technology (NIST) at the frequencies where NIST provides calibration service. This sensor compatibility accounts for the thermistor power meter being widely used in metrology and calibration lab for instrumentation and system calibration, as well as characterization.

Figure 2. Agilent N432A thermistor power meter supports 478A, and 8487B thermistor power sensors

Built-in 6.5 Digit Digital Multimeter

The legacy 432A thermistor power meters require an external DMM to measure the $V_{\rm RF}$ and $V_{\rm COMP}$ voltage via the rear panel BNC output of 432A meter. However, this external DMM is only available at an additional cost.

Figure 3. External DMM is required for measuring V_{comp} and V_{gg} voltage in 432A meter

The new N432A thermistor power meter is designed with an internal ADC, which is equivalent to a 6.5 DMM. This built-in DMM can measure the V_{COMP} and V_{RF} internally, without the need for an external DMM. The voltage measurement can display up to six digits. External V_{RF} & V_{COMP} output (via BNC at rear panel) for higher accuracy measurement can be done via external DMM and is an optional setup.

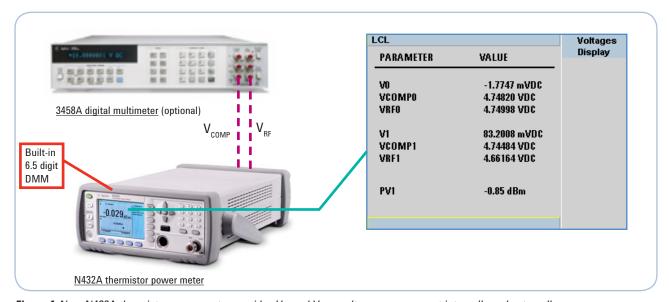
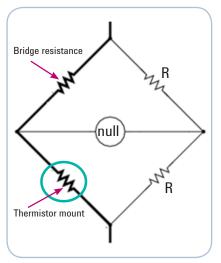



Figure 4. New N432A thermistor power meter provides $V_{\rm RF}$ and $V_{\rm COMP}$ voltage measurement internally and externally

User Selectable Operating Resistance

Figure 5. Legacy 432A performance tests with 8477A range calibrator

Setting the bridge resistance

A bridge resistance can be set for the thermistor sensor to balance the bridges. There are four selectable bridge resistance values consisting of 100 Ω , 200 Ω , 300 Ω , and 400 Ω , with 200 Ω as the default value.

In some applications, such as the Voltage Standing Wave Reflection (VSWR) measurement of a power source/reference, the bridge resistance is switched to have both balanced and unbalanced conditions, so that the VSWR can be measured and calculated. The unbalanced condition occurs when the bridge resistance selected is not the same as the operating thermistor resistance.

The N432A has more flexibility than its predecessor, the 432A, because it has more selections (100 $\Omega/200~\Omega/300~\Omega/400~\Omega$) compare to the old model.

Figure 6. Resistance type pop-up list

Setting the resistance type

You can select two resistance types (Rmeas or Ruser) where Rmeas is set as default. When you select Rmeas as the resistance type, an externally measured (in factory) bridge resistance value stored in EEPROM will be used. This value corresponds to the current bridge resistance setting, and is not editable via the front panel.

However, you can also measure and input the measured bridge resistance value into the power meter. When the Ruser is selected, you can enter a resistance value to be used in power measurement. The value of Ruser corresponds to the current bridge resistance setting, with a $\pm 10\%$ tolerance. If a value entered for Ruser exceeds the $\pm 10\%$ tolerance level of the bridge resistance, the value will be clipped to the upper/lower limit within tolerance.

This flexibility allows you to choose between the default bridge resistance value (stored in EEPROM) and the new bridge resistance value.

10 Connectivity Remote Interface

Previously, the legacy 432A/B thermistor power meters were designed without input/output (IO) connectivity or an interface. You could not perform automated testing for any application and thus it is less frequently used in slow performance test. Manual setting via front panel of the 432A/B thermistor power meters required you to understand well the test methodology and procedure to perform the testing and produce the result from time-to-time without any human error.

To sustain the high performance and reproducible measurement outcome, the new N432A introduces USB, LAN, and GPIB IO interface. This allows you to program and configure the measurement setting via SCPI commands using programming language. IVI-COM and IVI-C driver will be provided to function with the N432A thermistor power meter. IVI-COM driver works in any development environment which supports COM programming including Microsoft® Visual Basic, Microsoft Visual C++, Microsoft .NET, Agilent VEE Pro, National Instruments LabView® whereas IVI-C driver will support National Instruments LabWindows/CVI, and any others.

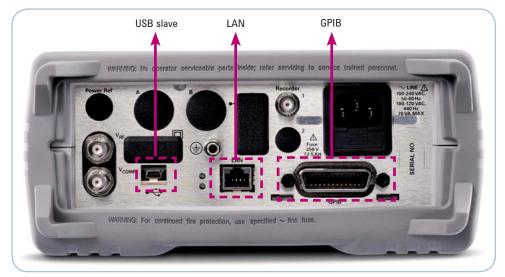
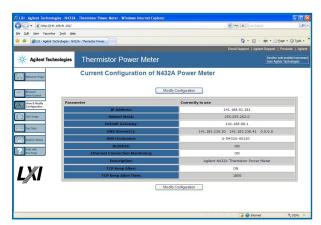


Figure 7. N432A IO connectivity with USB slave, LAN, and GPIB


The USB and LAN interface are growing in popularity as PC interfaces and their use is in line with the direction of other Agilent instruments. The USB 2.0 host interface provides PC connectivity via USB cable. The LAN interface can be configured by users and provides enhanced LXI-Class C compliance. The unrivalled connectivity of USB and LAN enables users to cope with the majority of PC control applications, and allows the test system to be easily integrated into the modern test environment.

The new N432A is a LXI-Class C compliance instrument that combines the advantages of Ethernet with simplicity and familiarity of GPIB. Having a web browser over the LAN connection allows you to view and control the N432A setting remotely (see Figures 8, 9, and 10). The web browser contains key information such as the manufacturer, model number, serial number, description, hostname, MAC address, and IP address.

IO Connectivity Remote Interface (continued)

Figure 8. Instrument web browser shows instrument settings at a glance and enables remote access/control

Figure 9. The web browser allows you to view and modify the LAN configuration

Figure 10. The web browser allows you to access/control the instrument settings remotely before performing any measurements

Power Sensor Calibration Factor Storage in Power Meter

The calibration factor is a correction factor that is used to improve the accuracy of power measurements. This factor appears on the thermistor power sensor mount. The calibration factor compensates for thermistor mount VSWR and RF losses whenever the thermistor mount is connected to RF source. With the legacy 432A/B thermistor power meters, you were required to manually set the "Calibration Factors Selector" to the appropriate factor indicated on the thermistor mount before making any measurement. The instrument normalizes the power meter reading to compensate for the calibration factor of a thermistor mount used for a given measurement.

Figure 11. Legacy thermistor power meter with manually calibration factor selector or switches

The new N432A thermistor power meter has a sensor calibration table, which stores the measurement calibration factors for a thermistor mount power sensor. This feature allows you to manually key in the calibration factor into power meter and use the sensor calibration table when making power measurements over a range of frequencies. During the measurement, specify the frequency of signal you want to measure. The calibration factor will be automatically set by the power meter from the sensor calibration table.

You can also create your own custom table for each sensor that you want to use for optimal accuracy.

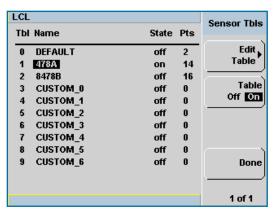


Figure 12. Calibration factor sensor table selected

Built-in Range Calibrator

The HP/Agilent model 8477A calibrator is a precision instrument designed to calibrate the legacy 432A/B thermistor power meters, and provides verification of full scale meter readings on all range as well as meter tracking. It supplies voltages to check and adjust the power bridge circuits; provision is made to calibrate a 432A for operation with either 100 Ω or 200 Ω thermistor mount resistances. Simply connect the cable between the power meter and calibrator. The CAL ADJ control on the power meter is used to set the meter to full scale on the 1 mW range.

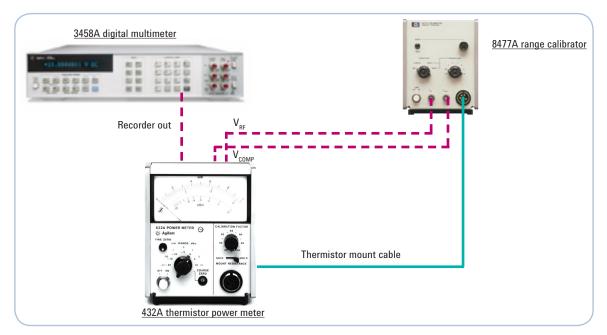


Figure 13. Legacy 432A performance tests with 8477A range calibrator

The new N432A thermistor power meter does not actually need a range calibrator. It has a built-in range calibrator DC source that allows average paths to be verified with the required external DMM, which is traceable. The DC source balances the DC bridge and uses the external DMM to measure the voltage at $V_{\rm RF}$ and $V_{\rm COMP}$. Calibration software is used to read the DMM voltage and compare it with the ADC reading of N432A meter to perform the calibration. After calibration, the new ADC data is stored inside the N432A meter.

Built-in Range Calibrator (continued)

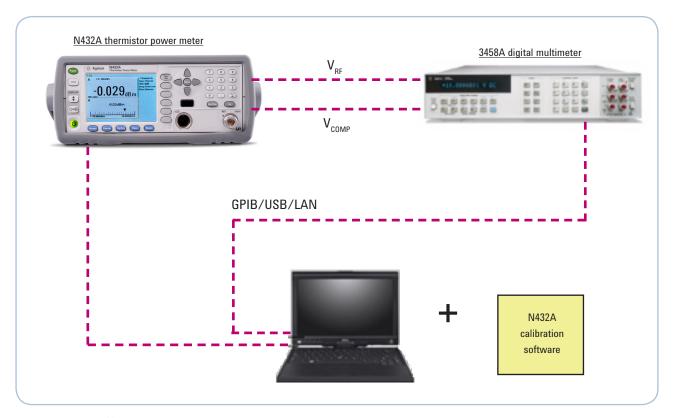


Figure 14. New N432A thermistor power meter with built-in range calibrator inside the meter

Within the N432A thermistor power meter calibration cycle (one year), users can always verify the meter accuracy via SCPI commands without the need of a range calibrator.

Enhanced User Interface with Numeric Keypad and High Resolution LCD Display

Changing and controlling the settings via the front panel of the power meter are the most common steps before making a measurement. The new N432A thermistor power meter offers arrow keys and numeric keypad, and allows positioning of the cursor for character selection and editing. The arrow keys are used to navigate around the parameter entry. While the legacy 432A/B thermistor power meters' measurement settings were done via front panel "Selector" or "Switches".

The new N432A thermistor power meter front panel is designed to enhance the view of measurement data and comes with a high-resolution color LCD display. You can view the measurement data in digital numeric and analog format concurrently. Whereas the legacy 432A measurement display is only available in analog, the 432B is in digital format.

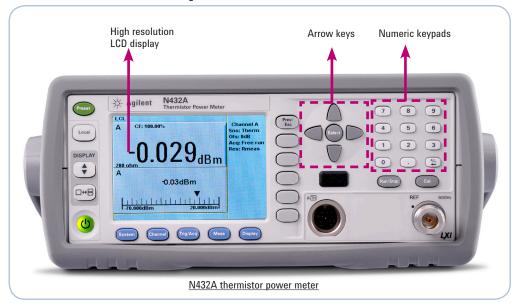


Figure 15. Enhanced user interface with LCD display, arrow keys, and numeric keypad

Figure 16. Legacy 432A/B front panel interface with analog/digital display and selector or switches

Conclusion

Migrating the legacy 432A to the new N432A thermistor power meter is a simple process that has been outlined in this document. Customers will be benefited from the following features added to the new N432A:

- Agilent thermistor mount sensor compatibility with 8478B, and 478A
- IO connectivety: GPIB, LAN (LXI-C compliance), and USB
- Selectable operating resistance: 100 Ω , 200 Ω , 300 Ω or 400 Ω
- Built-in high accuracy 6.5 digit DMM
- V_{RF} & V_{COMP} internal measurement or external output (through BNC port at rear panel). Built-in Test system (BIST) for ADC calibration without external range calibrator
- Enhanced user interface with numeric keypad and high resolution LCD display
- Calibration factor table provided for manual inputs of the thermistor mount calibration factor

Related Literatures

Agilent N432A Thermistor Power Meter Datasheet – 5990-5740EN

Related Link

http://www.agilent.com/find/powermeters

Linking up your instruments to the PC

Agilent GPIB and Instrument Control Products helps connect your instruments to the PC easily, reliable and affordably. From legendary GPIB cables to the the wide range of interface converters, see how each provides seamless integration to your instruments. www.agilent.com/find/gpib

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

www.lxistandard.org

LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.

Agilent Channel Partners

www.agilent.com/find/channelpartners
Get the best of both worlds: Agilent's
measurement expertise and product
breadth, combined with channel
partner convenience.

Acknowledgments:

Microsoft® - Microsoft is a U.S. registered trademark of Microsoft Corporation.

LabView® - LabView is a U.S. registered trademark of National Instruments.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment through-out its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements. For information regarding self maintenance of this product, please contact your Agilent office.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance, onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to:

www.agilent.com/find/removealldoubt

www.agilent.com

www.agilent.com/find/N432A

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas	
Canada	(877) 894 4414
Latin America	305 269 7500
United States	(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Thailand	1 800 226 008

Europe & Middle East

Europo & miauro	Luot	
Austria	43 (0) 1 360 277 1571	
Belgium	32 (0) 2 404 93 40	
Denmark	45 70 13 15 15	
Finland	358 (0) 10 855 2100	
France	0825 010 700*	
	*0.125 €/minute	
Germany	49 (0) 7031 464 6333	
Ireland	1890 924 204	
Israel	972-3-9288-504/544	
Italy	39 02 92 60 8484	
Netherlands	31 (0) 20 547 2111	
Spain	34 (91) 631 3300	
Sweden	0200-88 22 55	
Switzerland	0800 80 53 53	
United Kingdom	44 (0) 118 9276201	
Other European Countries:		
www.agilent.com/find/contactus		

Revised: October 1, 2009

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2010 Printed in USA, May 11, 2010 5990-5747FN

